1. 首页
  2. 高中试卷

2023年普通高等学校招生全国统一考试·金卷(五)5数学考试试题及答案

2023年普通高等学校招生全国统一考试·金卷(五)5数学考试试卷答案,我们目前收集并整理关于2023年普通高等学校招生全国统一考试·金卷(五)5数学考试得系列试题及其答案,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)

试题答案

2023年普通高等学校招生全国统一考试·金卷(五)5数学考试试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)

2023年普通高等学校招生全国统一考试·金卷(五)5数学考试

11.人的X染色体和¥染色体大小、形态不完全相同,但存在着同源区段(Ⅱ)和非同源区段(I、Ⅲ),如图所示。下列有关叙述中错误的是()A.若某病是由位于非同源区段Ⅲ上的致病基因控制的,则患者均为男性B.若X、染色体上存在一对等位基因,则该对等位基因位于同源区段Ⅱ上C若某病是由位于非同源区段I上的显性基因控制的,则男性患者的儿子一定患病D.若某病是由位于非同源区段I上的隐性基因控制的,则患病女性的儿子一定是患者

分析(1)由题意化简函数解析式可得:ymin=2cos(2C+$\frac{π}{3}$)+2=0,可得2C+$\frac{π}{3}$=2kπ+π,k∈Z,解得C=$\frac{π}{3}$,由同角三角函数关系式可求sinB,由正弦定理可求得b的值,利用三角形内角和定理可求sinA,由正弦定理即可解得a的值.
(2)由同角三角函数关系式可求cos(A-B),利用两角和的正弦函数公式可求sinA=sin[(A-B)+B].从而可求cosA,sinC=sin(A+B)的值,由正弦定理可解得a的值.

解答解:(1)∵y=3cos2x+sin2x-2$\sqrt{3}$sinxcosx
=2×$\frac{1+cos2x}{2}$+1-$\sqrt{3}$sin2x
=2cos(2x+$\frac{π}{3}$)+2,
∵ymin=2cos(2C+$\frac{π}{3}$)+2=2-2=0,此时由题意可得,2C+$\frac{π}{3}$=2kπ+π,k∈Z,解得:C=kπ+$\frac{π}{3}$,k∈Z.
∵C∈(0,π),
∴C=$\frac{π}{3}$.
∵cosB=$\frac{12}{13}$,sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{5}{13}$,c=12$\sqrt{3}$.
∴由正弦定理可得:b=$\frac{csinB}{sinC}$=$\frac{12\sqrt{3}×\frac{5}{13}}{\frac{\sqrt{3}}{2}}$=$\frac{120}{13}$,
∵sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{5}{13}×\frac{1}{2}+\frac{12}{13}×\frac{\sqrt{3}}{2}$=$\frac{5+12\sqrt{3}}{26}$,
∴由正弦定理可得:a=$\frac{csinA}{sinC}$=$\frac{12\sqrt{3}×\frac{5+12\sqrt{3}}{26}}{\frac{\sqrt{3}}{2}}$=$\frac{60+144\sqrt{3}}{13}$.
(2)∵cosB=$\frac{12}{13}$,sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{5}{13}$,c=12$\sqrt{3}$.
∵sin(A-B)=$\frac{3}{5}$,可求:cos(A-B)=±$\frac{4}{5}$,
∴①当cos(A-B)=$\frac{4}{5}$时,可得:
sinA=sin[(A-B)+B]=sin(A-B)cosB+cos(A-B)sinB=$\frac{3}{5}×\frac{12}{13}$+$\frac{4}{5}$×$\frac{5}{13}$=$\frac{56}{65}$,
cosA=$\sqrt{1-si{n}^{2}A}$=$\frac{33}{65}$,
sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{56}{65}$×$\frac{12}{13}$+$\frac{33}{65}$×$\frac{5}{13}$=$\frac{837}{845}$,
由正弦定理可得:a=$\frac{csinA}{sinC}$=$\frac{567840\sqrt{3}}{54405}$=$\frac{37856\sqrt{3}}{3627}$.
②当cos(A-B)=-$\frac{4}{5}$时,可得:
sinA=sin[(A-B)+B]=sin(A-B)cosB+cos(A-B)sinB=$\frac{3}{5}×\frac{12}{13}$+(-$\frac{4}{5}$)×$\frac{5}{13}$=$\frac{16}{65}$.
cosA=$\sqrt{1-si{n}^{2}A}$=-$\frac{63}{65}$.
∴sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{16}{65}$×$\frac{12}{13}$+(-$\frac{63}{65}$)×$\frac{5}{13}$=-$\frac{123}{845}$(舍去).

点评本题主要考查了正弦定理,三角函数恒等变换的应用,余弦函数的图象和性质,考查了分类讨论思想,计算量较大,属于中档题.

试题答案

原创文章,作者:admin,如若转载,请注明出处:http://yhfrose.cn/81819.html