陕西省2023届中考考前抢分卷CCZX A SX数学考试试卷答案,我们目前收集并整理关于陕西省2023届中考考前抢分卷CCZX A SX数学考试得系列试题及其答案,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)
陕西省2023届中考考前抢分卷CCZX A SX数学考试试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)
14.我们将若干个数x,y,z,…的最大值和最小值分别记为max(x,y,z,…)和min(x,y,z,…),已知a+b+c+d+e+f+g=1,求min[max(a+b+c,b+c+d,c+d+e,d+e+f,e+f+g)].
分析(1)解不等式$\frac{2}{x+1}≥1$求出D,结合二次函数的图象和性质,求出A;
(2)利用导数法,求出B,结合A⊆B,可得负实数t的取值范围;
(3)若函数g(x)=x3-3tx+$\frac{1}{2}t$在定义域[0,1]上单调递减,则g′(x)=3x2-3t≤0在[0,1]上恒成立,解得答案.
解答解:(1)解不等式$\frac{2}{x+1}≥1$得:x∈(-1,0],
故二次函数f(x)=x2+x的定义域D=(-1,0],
∵二次函数f(x)=x2+x的图象是开口朝上,且以直线x=-$\frac{1}{2}$为对称轴的抛物线,
故二次函数f(x)=x2+x在x=-$\frac{1}{2}$时,取最小值$-\frac{1}{4}$,当x=0时,取最大值0,
故二次函数f(x)=x2+x的值域A=[$-\frac{1}{4}$,0];
(2)∵函数g(x)=x3-3tx+$\frac{1}{2}t$,
∴g′(x)=3x2-3t,
当t<0时,g′(x)≥0恒成立,
g(x)=x3-3tx+$\frac{1}{2}t$,x∈[0,1]为增函数,
此时B=[$\frac{1}{2}t$,$-\frac{5}{2}t+1$],
若A⊆B,
则$\left\{\begin{array}{l}\frac{1}{2}t≤-\frac{1}{4}\\-\frac{5}{2}t+1≥0\end{array}\right.$,
解得:t≤$-\frac{1}{2}$;
(3)若函数g(x)=x3-3tx+$\frac{1}{2}t$在定义域[0,1]上单调递减,
则g′(x)=3x2-3t≤0在[0,1]上恒成立,
即t≥x2,x∈[0,1]恒成立,
解得:t≥1
点评本题考查的知识点是集合的包含关系,函数的定义域,值域,导数法求函数的最值,难度较大,属于难题.
原创文章,作者:admin,如若转载,请注明出处:http://yhfrose.cn/211572.html