晋学堂2023年山西省中考备战卷·模拟与适应(5月)数学考试试卷答案,我们目前收集并整理关于晋学堂2023年山西省中考备战卷·模拟与适应(5月)数学考试得系列试题及其答案,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)
晋学堂2023年山西省中考备战卷·模拟与适应(5月)数学考试试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)
11.宋代诗人杨万里的《宿新市徐公店》中“篱落疏疏一径深,树头新绿未成阴。儿童急走追黄蝶飞入菜花无处寻”,描绘了人与大自然和谐相处的场景。下列相关叙述错误的是A.诗句中植物的生长、发育全过程受光影响、调控B.调查黄蝶的种群密度时,若标记个体容易死亡,则统计结果偏大C.“树头新绿”为植食性动物提供了可以开始采食的物理信息D.自然美景激发了诗人创作体现了生物多样性的间接价值
分析(1)先根据函数奇偶性的定义,可得函数f(x)为奇函数,再根据函数单调性的性质,和函数奇偶性的性质,可得函数f(x)=ln($\sqrt{{x}^{2}+1}+x$)在定义域R上为增函数;
(2)令函数h(x)=2x-2-x,可得函数h(x)也为奇函数,且在R上为增函数,进而可得g(x)为奇函数,且在R上为增函数,进而转化不不等式g(3a-1)+g(a-3)>0为整式不等式,可得结论.
解答证明:(1)∵函数f(x)=ln($\sqrt{{x}^{2}+1}+x$),
∴f(-x)=ln($\sqrt{{x}^{2}+1}-x$)=ln$\frac{1}{\sqrt{{x}^{2}+1}+x}$=-ln($\sqrt{{x}^{2}+1}+x$)=-f(x),
故函数f(x)为奇函数,
当x≥0时,t=$\sqrt{{x}^{2}+1}+x$为增函数,y=lnt为增函数,
故函数f(x)=ln($\sqrt{{x}^{2}+1}+x$)也为增函数,
再由奇函数在对称区间上单调性一致,
可得当x≤0时,函数f(x)=ln($\sqrt{{x}^{2}+1}+x$)也为增函数,
综上可得:函数f(x)=ln($\sqrt{{x}^{2}+1}+x$)在定义域R上为增函数;
(2)令函数h(x)=2x-2-x,
则h(-x)=2-x-2x=-(2x-2-x)=-h(x),
故函数h(x)也为奇函数,
当x≥0时,t=2x为增函数,s=2-x为减函数,
故h(x)=2x-2-x为增函数,
再由奇函数在对称区间上单调性一致,
可得当x≤0时,函数h(x)=2x-2-x也为增函数,
又由函数g(x)=f(x)+2x-2-x,
故函数g(x)为奇函数,且在R上为增函数,
若g(3a-1)+g(a-3)>0,
则g(3a-1)>-g(a-3),
即g(3a-1)>g(3-a),
即3a-1>3-a,
解得:a>1
点评本题考查的知识点是函数单调性的判定与证明,对数函数的图象和性质,函数的奇偶性,是函数图象和性质的综合应用,难度中档.
原创文章,作者:admin,如若转载,请注明出处:http://yhfrose.cn/204959.html