江西省修水县2023年九年级学考第一次模拟考试数学考试试卷答案,我们目前收集并整理关于江西省修水县2023年九年级学考第一次模拟考试数学考试得系列试题及其答案,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)
江西省修水县2023年九年级学考第一次模拟考试数学考试试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)
15.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别是F1(-c,0),F2(c,0),点M是椭圆上的任意一点,△MF1F2的周长是2$\sqrt{2}$+2,且△MF1F2面积的最大值是1.
(1)求椭圆C的标准方程;
(2)若N是椭圆上一点,点M,N不重合,线段MN的垂直平分线的方程是2λx-2y+1=0,求△0MN面积的最大值.
分析设在等腰直角三角形ABC中,∠C=90°,中线AD与BE相交于O,则∠CAD=∠CBE,∠AOB=90°+2∠CAD,由此能求出等腰直角三角形中两直角边上的中线所成的钝角的余弦值.
解答解:设在等腰直角三角形ABC中,∠C=90°,
中线AD与BE相交于O,则∠CAD=∠CBE,
∠AOB=∠CBE+∠ODB=∠CBE+∠CAD+∠C=90°+2∠CAD,
在Rt△CAD中,设CD=1,则BC=2,∴AD=$\sqrt{5}$,
∴sin∠CAD=$\frac{1}{\sqrt{5}}$,cos∠CAD=$\frac{2}{\sqrt{5}}$,
∴cos∠AOB=cos(90°+2∠CAD)=-sin2∠CAD
=-2sin∠CAD•cos∠CAD
=-2×$\frac{1}{\sqrt{5}}$×$\frac{2}{\sqrt{5}}$
=-$\frac{4}{5}$.
∴等腰直角三角形中两直角边上的中线所成的钝角的余弦值为-$\frac{4}{5}$.
点评本题考查等腰直角三角形中两直角边上的中线所成的钝角的余弦值的求法,是中档题,解题时要认真审题,注意三角形诱导公式、正弦二倍角公式的合理运用.
原创文章,作者:admin,如若转载,请注明出处:http://yhfrose.cn/162902.html