2022-2023学年陕西省高一年级选科调考(003A SX)数学试卷答案,我们目前收集并整理关于2022-2023学年陕西省高一年级选科调考(003A SX)数学得系列试题及其答案,更多试题答案请关注微信公众号:考不凡/
2022-2023学年陕西省高一年级选科调考(003A SX)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)
7.在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立直角坐标系,将曲线C1$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)上所有点的横坐标、纵坐标分别伸长为原来的2和$\frac{1}{2}$后得到曲线C2.
(1)求曲线C1的极坐标方程和曲线C2的普通方程;
(2)已知直线1:ρ(cosθ+2sinθ)=4,点P在曲线C2上,求点P到直线l的距离的最小值.
分析(1)运用数列极限公式$\underset{lim}{n→∞}$$\frac{1}{{2}^{n-1}}$=0;(2)运用等比数列的求和公式求得Sn,再取极限,即可得到所求值.
解答解:由an=$\left\{\begin{array}{l}{\frac{1}{n(n+1)},1≤n≤3}\\{\frac{1}{{2}^{n-1}}.n≥4}\end{array}\right.$,
(1)$\underset{lim}{n→∞}{a}_{n}$=$\underset{lim}{n→∞}$$\frac{1}{{2}^{n-1}}$=0;
(2)Sn为前n项的和,
即有Sn=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{8}$+$\frac{1}{16}$+…+$\frac{1}{{2}^{n-1}}$
=$\frac{3}{4}$+$\frac{\frac{1}{8}(1-\frac{1}{{2}^{n-3}})}{1-\frac{1}{2}}$=1-$\frac{1}{{2}^{n-1}}$,
即有$\underset{lim}{n→∞}{S}_{n}$=$\underset{lim}{n→∞}$(1-$\frac{1}{{2}^{n-1}}$)
=1-$\underset{lim}{n→∞}$$\frac{1}{{2}^{n-1}}$=1-0=1.
点评本题考查等比数列的通项和求和公式的运用,考查数列极限的求法,考查运算能力,属于中档题.
原创文章,作者:admin,如若转载,请注明出处:http://yhfrose.cn/50092.html