
(新高考)高考数学一轮复习讲练测专题8.5《直线、平面垂直的判定及性质》(解析),以下展示关于(新高考)高考数学一轮复习讲练测专题8.5《直线、平面垂直的判定及性质》(解析)的相关内容节选,更多内容请多关注我们
1、专题8.5 直线、平面垂直的判定及性质新课程考试要求1.了解平面的含义,理解空间点、直线、平面位置关系的定义,掌握公理、判定定理和性质定理;2. 掌握公理、判定定理和性质定理.核心素养本节涉及的数学核心素养:数学运算、逻辑推理、直观想象等.考向预测(1)以几何体为载体,考查线线、线面、面面垂直证明.(2)利用垂直关系及垂直的性质进行适当的转化,处理综合问题.(3)本节是高考的必考内容预测2020年高考将以直线、平面垂直的判定及其性质为重点,涉及线线垂直、线面垂直及面面垂直的判定及其应用,题型为解答题中的一问,或与平行相结合进行命题的判断.以及运用其进一步研究体积、距离、角的问题,考查转化与化归。
2、思想、运算求解能力及空间想象能力【知识清单】知识点1直线与平面垂直的判定与性质定义:如果一条直线和一个平面内的任何一条直线都垂直,那么称这条直线和这个平面垂直定理:文字语言图形语言符号语言判定定理如果一条直线和一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.l性质定理如果两条直线同垂直于一个平面,那么这两条直线平行.ab知识点2平面与平面垂直的判定与性质定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直定理:文字语言图形语言符号语言判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.性质定理如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线。
3、垂直于另一个平面.AB知识点3线面、面面垂直的综合应用1直线与平面垂直(1)判定直线和平面垂直的方法定义法利用判定定理:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面(2)直线和平面垂直的性质直线垂直于平面,则垂直于平面内任意直线垂直于同一个平面的两条直线平行垂直于同一直线的两平面平行2斜线和平面所成的角斜线和它在平面内的射影所成的锐角,叫斜线和平面所成的角3平面与平面垂直(1)平面与平面垂直的判定方法定义法利用判定定理:如果一个平面过另一个平面的一条垂线,则这两个平面互相垂直(2)平面与平面垂直的性。
4、质如果两平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面【考点分类剖析】考点一 :直线与平面垂直的判定与性质【典例1】(2021全国高考真题(文)已知直三棱柱中,侧面为正方形,E,F分别为和的中点,.(1)求三棱锥的体积;(2)已知D为棱上的点,证明:.【答案】(1);(2)证明见解析.【解析】(1)首先求得AC的长度,然后利用体积公式可得三棱锥的体积;(2)将所给的几何体进行补形,从而把线线垂直的问题转化为证明线面垂直,然后再由线面垂直可得题中的结论.【详解】(1)如图所示,连结AF,由题意可得:,由于ABBB1,BCAB,故平面,而平面,故,从而有,从而,则,为等腰直角三。
5、角形,.(2)由(1)的结论可将几何体补形为一个棱长为2的正方体,如图所示,取棱的中点,连结,正方形中,为中点,则,又,故平面,而平面,从而.【典例2】(2021河北易县中学高一月考)在三棱锥中,O是线段AC的中点,M是线段BC的中点.(1)求证:PO平面ABC;(2)求直线PM与平面PBO所成的角的正弦值.【答案】(1)证明见解析;(2)【解析】(1)利用勾股定理得出线线垂直,结合等边三角形的特点,再次利用勾股定理得出线线垂直,进而得出线面垂直;(2)根据线面垂直面 ,得出线和面的夹角 ,从而得出线面角的正弦值.【详解】(1)由,有,从而有,且又是边长等于的等边三角形,.又,从而有.又平面.(2)过点作交于点,连.由(1)知平面,得,又平面是直线与平面所成的角.由(1),从而为线段的中点,所以直线与平面所成的角的正弦值为【规律方法】 (1)证明直线和平面垂直的常用方法:判定定理;垂直于平面的传递性(ab,ab);面面平行的性质(a,a);面面垂直的性质.(2)证明线面垂直的核心是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.(3。
….
原创文章,作者:admin,如若转载,请注明出处:http://yhfrose.cn/32901.html