陕西省2024届九年级阶段评估(一)【1LR】数学考试试卷答案,我们目前收集并整理关于陕西省2024届九年级阶段评估(一)【1LR】数学考试得系列试题及其答案,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)
陕西省2024届九年级阶段评估(一)【1LR】数学考试试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)
6.已知点A(-2,3),B(4,6),$\overrightarrow{O{A}_{1}}$=$\frac{1}{2}$$\overrightarrow{OA}$,$\overrightarrow{O{B}_{1}}$=$\frac{1}{2}$$\overrightarrow{OB}$,求$\overrightarrow{{A}_{1}{B}_{1}}$的坐标.
分析函数f(x)=ex+elnx-2ax在x∈(1,3)上单调递增,等价于f′(x)≥0在区间(1,3)上恒成立,分离参数a后化为求函数的范围即可得到所求范围.
解答解:∵函数f(x)=ex+elnx-2ax在x∈(1,3)上单调递增,
∴f′(x)≥0在区间(1,3)上恒成立,
则$\frac{e}{x}$+ex-2a≥0,即2a≤$\frac{e}{x}$+ex在区间(1,3)上恒成立,
而y=$\frac{e}{x}$+ex的导数为ex-$\frac{e}{{x}^{2}}$,
由于ex∈(e,e3),$\frac{e}{{x}^{2}}$∈($\frac{1}{9}$e,e),
即有ex-$\frac{e}{{x}^{2}}$>0,则y=$\frac{e}{x}$+ex在(1,3)递增,
即有y=$\frac{e}{x}$+ex>2e,
故2a≤e,解得a≤e.
故选C.
点评该题考查利用导数研究函数的单调性,考查函数恒成立问题,考查转化思想,恒成立问题往往转化为函数最值解决.
原创文章,作者:admin,如若转载,请注明出处:http://yhfrose.cn/250353.html