1. 首页
  2. 高中试卷

阳泉市2024-2023学年度高一年级第二学期期末教学质量监测数学考试试题及答案

阳泉市2022-2023学年度高一年级第二学期期末教学质量监测数学考试试卷答案,我们目前收集并整理关于阳泉市2022-2023学年度高一年级第二学期期末教学质量监测数学考试得系列试题及其答案,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)

试题答案

阳泉市2022-2023学年度高一年级第二学期期末教学质量监测数学考试试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)

阳泉市2022-2023学年度高一年级第二学期期末教学质量监测数学考试

(3)若蟹塘中藻类大量疯长会造成水华现象。科研人员通过向蟹塘中适当多投放鱼、栽种水生植物等措施抑制藻类数量。从生态学角度分析,采取上述措施后,藻类数量减少的原因是,。

分析(Ⅰ)由三角函数恒等变换的应用可求函数解析式f(x)=2sin(2ωx-$\frac{π}{6}$),由题意可求周期T=$\frac{π}{2}$,由周期公式可求ω,从而可得函数解析式,进而得解.
(Ⅱ)由(Ⅰ)可求g(x)=2sin(4x+4m-$\frac{π}{6}$),由题意可得4×$\frac{π}{6}$+4m-$\frac{π}{6}$=kπ(k∈Z),可得:m=$\frac{kπ}{4}$-$\frac{π}{8}$,可求m的最小值,由2k$π-\frac{π}{2}$≤4x+$\frac{π}{3}$≤2k$π+\frac{π}{2}$,k∈Z,解得g(x)的单调递增区间.

解答(本题满分为12分)
解:(Ⅰ)由题意可得:f(x)=sin2ωx+2$\sqrt{3}$sinωxcosωx-cos2ωx
=-(cos2ωx-sin2ωx)+$\sqrt{3}$sin2ωx
=$\sqrt{3}$sin2ωx-cos2ωx
=2sin(2ωx-$\frac{π}{6}$)
∵f(x)的图象相邻两条对称轴的距离为$\frac{π}{4}$.
∴周期T=$\frac{π}{2}$,由$\frac{2π}{2ω}$=$\frac{π}{2}$,可得ω=2.
∴f(x)=2sin(4x-$\frac{π}{6}$),
∴f($\frac{π}{4}$)=2sin(4×$\frac{π}{4}$-$\frac{π}{6}$)=2sin$\frac{5π}{6}$=1…6分
(Ⅱ)由(Ⅰ)可知f(x)=2sin(4x-$\frac{π}{6}$),则g(x)=2sin(4x+4m-$\frac{π}{6}$),
∵($\frac{π}{6}$,0)为y=g(x)图象的一个对称中心,
∴2sin(4×$\frac{π}{6}$+4m-$\frac{π}{6}$)=0,解得:4×$\frac{π}{6}$+4m-$\frac{π}{6}$=kπ(k∈Z),可得:m=$\frac{kπ}{4}$-$\frac{π}{8}$,
当k=1时,m取得最小值$\frac{π}{8}$…10分本题
此时g(x)=2sin(4x+$\frac{π}{3}$),
由2k$π-\frac{π}{2}$≤4x+$\frac{π}{3}$≤2k$π+\frac{π}{2}$,k∈Z,解得g(x)的单调递增区间为:[$\frac{kπ}{2}$-$\frac{5π}{24}$,$\frac{kπ}{2}$+$\frac{π}{24}$],k∈Z…12分

点评本题主要考查了函数y=Asin(ωx+φ)的图象变换,三角函数恒等变换的应用,周期公式,正弦函数的图象和性质,考查了计算能力和转化思想,属于中档题.

原创文章,作者:admin,如若转载,请注明出处:http://yhfrose.cn/229324.html