合阳县2023年初中学业水平九年级第二次模拟考试(5月)数学考试试卷答案,我们目前收集并整理关于合阳县2023年初中学业水平九年级第二次模拟考试(5月)数学考试得系列试题及其答案,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)
合阳县2023年初中学业水平九年级第二次模拟考试(5月)数学考试试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)
4.已知f(x)=cos2x-$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$,
(1)写出f(x)图象的对称中心的坐标和单调递增区间;
(2)△ABC三个内角A、B、C所对的边为a、b、c,若f(A)+1=0,b+c=2.求a的最小值.
分析(1)根据题意列出y与x的函数解析式,变形后利用二次函数性质求出池内水量最少时的时间即可;
(2)若每小时向水池供水3千吨,表示出y与x关系式,利用作差法判断即可.
解答解:(1)依题意得:y=9+2x-8$\sqrt{x}$=2($\sqrt{x}$-2)2+1,
当$\sqrt{x}$=2,即x=4时,蓄水池水量最少,ymin=1(千吨),
则y与x的函数解析式为y=9+2x-8$\sqrt{x}$,且4小时时,y的最小值为1千吨,即为池内水量最少;
(2)若每小时向水池供水3千吨,即y=9+3x-8$\sqrt{x}$,
∴(9+3x-8$\sqrt{x}$)-3=3($\sqrt{x}$-$\frac{4}{3}$)2+$\frac{2}{3}$>0,
则水厂每小时注入3千吨水,不会发生供水紧张情况.
点评此题考查了函数模型的选择与应用,熟练掌握二次函数性质是解本题的关键.
原创文章,作者:admin,如若转载,请注明出处:http://yhfrose.cn/194618.html