2023届高三苏锡常镇四市第二次教学情况调研(2023.5.4)数学考试试卷答案,我们目前收集并整理关于2023届高三苏锡常镇四市第二次教学情况调研(2023.5.4)数学考试得系列试题及其答案,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)
2023届高三苏锡常镇四市第二次教学情况调研(2023.5.4)数学考试试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)
10.函数f(x)是定义在(0,+∞)上的单调函数,?x∈(0,+∞),f[f(x)-lnx]=e+1,则方程f(x)-f′(x)=e(其中e为自然对数的底数)的解所在的区间是( )
A. | (0,$\frac{1}{2}$) | B. | ($\frac{1}{2}$,1) | C. | (1,2) | D. | (2,3) |
分析利用$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$≥$\frac{a+b}{2}$,可得$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$-$\sqrt{ab}$≥$\frac{a+b}{2}$-$\sqrt{ab}$,结合不等式$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$-$\sqrt{ab}$≥λ($\frac{a+b}{2}$-$\sqrt{ab}$)对任意非负实数a.b恒成立,即可得出正数λ的取值范围.
解答解:∵$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$≥$\frac{a+b}{2}$,
∴$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$-$\sqrt{ab}$≥$\frac{a+b}{2}$-$\sqrt{ab}$,
∵不等式$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$-$\sqrt{ab}$≥λ($\frac{a+b}{2}$-$\sqrt{ab}$)对任意非负实数a.b恒成立,λ>0
∴0<λ≤1.
故选:A.
点评本题考查正数λ的取值范围,考查基本不等式的运用,考查学生的计算能力,正确运用$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$≥$\frac{a+b}{2}$是关键.
原创文章,作者:admin,如若转载,请注明出处:http://yhfrose.cn/188713.html