2023年高考临门·名师解密卷(★★★)数学考试试卷答案,我们目前收集并整理关于2023年高考临门·名师解密卷(★★★)数学考试得系列试题及其答案,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)
2023年高考临门·名师解密卷(★★★)数学考试试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)
9.以平面直角坐标系的原点为极点,x 轴的正轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l的参数方程是$\left\{\begin{array}{l}{x=t+1}\\{y=t-2}\end{array}\right.$(t为参数),圆C的极坐标方程是ρ=4cosθ.
(1)求直线l和圆C的普通方程,
(2)求直线l被圆C截得的弦长.
分析(1)将已知等式通分后利用两角和的正弦函数公式整理,利用正弦定理可得:ab=c2,结合已知c=2,即可求值.
(2)由已知及三角形面积公式可解得:sinC=$\frac{\sqrt{3}}{2}$,结合C为锐角,可得cosC,利用余弦定理即可得解.
解答解:(1)∵$\frac{cosA}{sinA}$+$\frac{cosB}{sinB}$=$\frac{1}{sinC}$,
∴$\frac{cosAsinB+cosBsinA}{sinAsinB}$=$\frac{sin(A+B)}{sinAsinB}$=$\frac{sinC}{sinAsinB}$=$\frac{1}{sinC}$,
∴整理可得:sinAsinB=sin2C,
∴由正弦定理可得:ab=c2,
∵c=2.
∴ab=4.
(2)∵△ABC的面积S=$\sqrt{3}$=$\frac{1}{2}$absinC=$\frac{1}{2}×4×$sinC,解得:sinC=$\frac{\sqrt{3}}{2}$.
∴由C为锐角,可得cosC=$\sqrt{1-si{n}^{2}C}$=$\frac{1}{2}$.
∴由余弦定理可得:4=a2+b2-2×ab×$\frac{1}{2}$,解得:a2+b2=8.
点评本题主要考查了正弦定理,余弦定理,两角和的正弦函数公式,三角形内角和定理,三角形面积公式的应用,考查了转化思想,属于中档题.
原创文章,作者:admin,如若转载,请注明出处:http://yhfrose.cn/184755.html