2023届普通高等学校招生全国统一考试·猜题金卷1-6数学考试试卷答案,我们目前收集并整理关于2023届普通高等学校招生全国统一考试·猜题金卷1-6数学考试得系列试题及其答案,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)
2023届普通高等学校招生全国统一考试·猜题金卷1-6数学考试试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)
9.两个变量x,y的散点图与函数y=axb的图象近似,将函数y=axb作线性变换,再利用最小二乘法得到的回归方程为u=3+0.5v,若x=e2,则y的近似值为( )
A. | e | B. | e2 | C. | e3 | D. | e4 |
分析①把原数列递推式变形,可得(an+2-an+1)-(an+1-an)=2,即bn+1-bn=2.再由已知求得b1=a2-a1=0,可得{bn}是以0为首项,以2为公差的等差数列;
②由①中的等差数列求出{bn}的通项公式,代入bn=an+1-an,利用累加法求得{an}的通项公式.
解答解:①由an+2=2an+1-an+2,得
(an+2-an+1)-(an+1-an)=2,
由bn=an+1-an,得bn+1-bn=2.
又a1=2,a2=2,∴b1=a2-a1=0,
∴{bn}是以0为首项,以2为公差的等差数列;
②由①得bn=0+2(n-1)=2n-2,
∴an+1-an=2n-2.
则a2-a1=2×1-2,
a3-a2=2×2-2,
a4-a3=2×3-2,
…
an-an-1=2(n-1)-2(n≥2).
累加得:an-a1=2[1+2+…+(n-1)]-2(n-1),
∴${a}_{n}=2+2×\frac{n(n-1)}{2}-2(n-1)={n}^{2}-3n+4$.
验证a1=2适合上式,
∴${a_n}={n^2}-3n+4$.
点评本题考查数列递推式,考查了等差关系的确定,训练了累加法求数列的通项公式,是中档题.
原创文章,作者:admin,如若转载,请注明出处:http://yhfrose.cn/183451.html