1. 首页
  2. 高中试卷

2024-2023下学期衡水金卷先享题高三三模考试数学考试试题及答案

2022-2023下学期衡水金卷先享题高三三模考试数学考试试卷答案,我们目前收集并整理关于2022-2023下学期衡水金卷先享题高三三模考试数学考试得系列试题及其答案,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)

试题答案

2022-2023下学期衡水金卷先享题高三三模考试数学考试试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)

6.已知函数f(x)=x+$\frac{a}{x}$+lnx(a∈R),在(1,+∞)上单调递增,则a的取值范围为(-∞,2].

分析可设P(7$\sqrt{2}$cosα,7sinα),0≤α<2π,A(0,5),即有|PA|=$\sqrt{(7\sqrt{2}cosα)^{2}+(7sinα-5)^{2}}$,再由同角的平方关系和正弦函数的值域,配方即可得到所求最值.

解答解:点P为椭圆x2+2y2=98上一个动点,
可设P(7$\sqrt{2}$cosα,7sinα),0≤α<2π,
A(0,5),即有|PA|=$\sqrt{(7\sqrt{2}cosα)^{2}+(7sinα-5)^{2}}$
=$\sqrt{-49si{n}^{2}α-70sinα+123}$
=$\sqrt{-49(sinα+\frac{5}{7})^{2}+148}$,
由-1≤sinα≤1,可得sinα=-$\frac{5}{7}$时,|PA|取得最大值2$\sqrt{37}$;
当sinα=1,即α=$\frac{π}{2}$时,|PA|取得最小值2.

点评本题考查椭圆的参数方程的运用,考查三角函数的化简和求值,注意运用同角的平方关系和正弦函数的值域,属于中档题.

原创文章,作者:admin,如若转载,请注明出处:http://yhfrose.cn/176855.html