江西省2025届七年级第七次阶段性测试(R-PGZX A JX)数学考试试卷答案,我们目前收集并整理关于江西省2025届七年级第七次阶段性测试(R-PGZX A JX)数学考试得系列试题及其答案,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)
江西省2025届七年级第七次阶段性测试(R-PGZX A JX)数学考试试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)
1.数列-1,3,-5,7,…的一个通项公式是( )
A. | an=(-1)n–1(2n+1) | B. | an=(-1)n-1(2n-1) | C. | an=(-1)n(2n-1) | D. | an=(-1)n(2n+1) |
分析分别求出每一个命题中曲线C的导数,得到曲线在点P处的导数值,求出曲线在点P处的切线方程,再由曲线在点P两侧的函数值与对应直线上点的值的大小判断是否满足(ii),可判断出选项是否符合题意.
解答解:A,由y=x3得y′=3x2,则y′|x=0=0,直线y=0是过点P(0,0)的曲线C的切线,
又当x>0时y>0,当x<0时y<0,满足曲线C在P(0,0)附近位于直线y=0两侧,A不符合题意;
B、由y=sinx得y′=cosx,则y′|x=π=-1,直线y=-x+π是过点P(0,0)的曲线的切线,
又x∈(-$\frac{π}{2}$,0)时x<sinx,x∈(0,$\frac{π}{2}$)时x>sinx,
满足曲线C在P(0,0)附近位于直线y=-x+π两侧,B不符合题意;
C、由y=tanx得y′=sec2x,则y′|x=0=1,直线y=x是过点P(0,0)的曲线的切线,
又x∈(-$\frac{π}{2}$,0)时x>tanx,x∈(0,$\frac{π}{2}$)时x<tanx,
满足曲线C在P(0,0)附近位于直线y=x两侧,C不符合题意;
D、由y=lnx得y′=$\frac{1}{x}$,则y′|x=1=1,曲线在P(1,0)处的切线为y=x-1,
由g(x)=x-1-lnx,得g′(x)=1-$\frac{1}{x}$,
当x∈(0,1)时,g′(x)<0,当x∈(1,+∞)时,g′(x)>0.
则g(x)在(0,+∞)上有极小值也是最小值,为g(1)=0.
即y=x-1恒在y=lnx的上方,不满足曲线C在点P附近位于直线l的两侧,D符合题意,
故选:D.
点评本题考查了利用导数研究过曲线上某点处的切线方程,综合考查导数的应用:求单调区间和极值、最值,同时考查新定义的理解,属于中档题和易错题.
原创文章,作者:admin,如若转载,请注明出处:http://yhfrose.cn/173463.html