[唐山二模]唐山市2023届普通高等学校招生统一考试第二次模拟演练数学考试试卷答案,我们目前收集并整理关于[唐山二模]唐山市2023届普通高等学校招生统一考试第二次模拟演练数学考试得系列试题及其答案,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)
[唐山二模]唐山市2023届普通高等学校招生统一考试第二次模拟演练数学考试试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)
8.以极点为平面直角坐标系的原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程是$\left\{\begin{array}{l}{x=4+tcosa}\\{y=2+tcosa}\end{array}\right.$ (t为参数,a为直线l的倾斜角),曲线C的极坐标方程为ρ=4cosθ
(1)写出曲线C的直角坐标方程
(2)直线l与曲线C交于不同的两点M,N,设P(4,2).求|PM|+|PN|的取值范围.
分析(Ⅰ)由条件可知,${S_{n+1}}-{S_n}={S_n}+{2^{n+1}}$,即${S_{n+1}}-2{S_n}={2^{n+1}}$,整理得$\frac{{{S_{n+1}}}}{{{2^{n+1}}}}-\frac{S_n}{2^n}=1$,即可证明.
(Ⅱ)由(1)可知,$\frac{S_n}{2^n}=1+n-1=n$,即${S_n}=n•{2^n}$,利用“错位相减法”与等比数列的前n项和公式即可得出.
解答(Ⅰ)证明:由条件可知,${S_{n+1}}-{S_n}={S_n}+{2^{n+1}}$,即${S_{n+1}}-2{S_n}={2^{n+1}}$,
整理得$\frac{{{S_{n+1}}}}{{{2^{n+1}}}}-\frac{S_n}{2^n}=1$,
∴数列$\{\frac{S_n}{2^n}\}$是以1为首项,1为公差的等差数列.
(Ⅱ)由(1)可知,$\frac{S_n}{2^n}=1+n-1=n$,即${S_n}=n•{2^n}$,
令Tn=S1+S2+…+Sn${T_n}=1•2+2•{2^2}+…+n•{2^n}$①
$2{T_n}=1•{2^2}+…+(n-1)•{2^n}+n•{2^{n+1}}$②
①-②,$-{T_n}=2+{2^2}+…+{2^n}-n•{2^{n+1}}$,
整理得${T_n}=2+(n-1)•{2^{n+1}}$.
点评本题考查了“错位相减法”、等差数列与等比数列的通项公式与前n项和公式,考查了推理能力与计算能力,属于中档题.
原创文章,作者:admin,如若转载,请注明出处:http://yhfrose.cn/158899.html