1. 首页
  2. 高中试卷

2023年普通高等学校招生全国统一考试23·JJ·YTCT金卷·押题猜题(七)数学考试试题及答案

2023年普通高等学校招生全国统一考试23·JJ·YTCT金卷·押题猜题(七)数学考试试卷答案,我们目前收集并整理关于2023年普通高等学校招生全国统一考试23·JJ·YTCT金卷·押题猜题(七)数学考试得系列试题及其答案,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)

试题答案

2023年普通高等学校招生全国统一考试23·JJ·YTCT金卷·押题猜题(七)数学考试试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:考不凡/直接访问www.kaobufan.com(考不凡)

15.已知双曲线x2-$\frac{{y}^{2}}{3}$=1的一条渐近线与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{a}^{2}-4}$=1相交与点P,若|OP|=2,则椭圆离心率为(  )

A. $\sqrt{3}$-1 B. $\frac{1}{3}$ C. $\frac{\sqrt{3}}{3}$ D. $\frac{\sqrt{3}-1}{2}$

分析由正方形的性质算出ABCD所在的平面小圆半径为r=$\sqrt{2}$.四棱锥S-ABCD的高为1,得到S在平行于ABCD所在平面且距离等于1的平面α上,由此结合球的截面圆性质和勾股定理加以计算,即可算出底面ABCD的中心与顶点S之间的距离.

解答解:由题意,设正方形ABCD的中心为G,可得
∵ABCD所在的圆是小圆,对角线长为2$\sqrt{2}$,即小圆半径为r=$\sqrt{2}$
∵点S、A、B、C、D均在半径为$\frac{\sqrt{17}}{2}$的同一球面上,
∴球心到小圆圆心的距离OG=$\frac{3}{2}$,
∵四棱锥S-ABCD的高为1,
∴点S与ABCD所在平面的距离等于1,
设平面α∥平面ABCD,且它们的距离等于1,平面α截球得小圆的圆心为H,
则OH=$\frac{1}{2}$,
∴Rt△SOH中,SH2=OS2-OH2=R2-($\frac{1}{2}$)2=4,
可得SG$\sqrt{4+1}$=$\sqrt{5}$,即底面ABCD的中心G与顶点S之间的距离为$\sqrt{5}$
故选:C.

点评本题给出四棱锥的四个顶点在同一个球面上,求它的顶点到底面中心的距离.着重考查了正方形的性质、球的截面圆性质和勾股定理等知识,属于中档题.

原创文章,作者:admin,如若转载,请注明出处:http://yhfrose.cn/150034.html